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The kink-antikink kinetics of one-dimensional phase ordering under conserved order parameter dynamics is
studied numerically. The average domain size is found to grow logarithmically, and the distribution of domain
size and order parameter correlation function are shown to satisfy a scaling relation. The two-time autocorre-
lation function follows a power law ofAt0

std, t−l, wherel depends on the start time of the calculationt0. If
t0 is in the scaling regime,l takes a constant value of 3.0. Thus the scaling functions are sensitive to the initial
configuration of domains. When the initial kink positions are given by uniform random numbers, the scaling
functions agree with those obtained by cell dynamical system simulation.
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The growth of an ordered phase following quenching
from a disordered phase satisfies a form of dynamical scaling
in most cases[1]. For the vector order parametercsr ,td, the
correlation functionCsr ,td=kcsr0,td ·csr0+r ,tdl is known
to be cast into a scaling formCsr ,td= fsr /,d and the charac-
teristic length grows algebraically in time,,std, t1/z. The
form of the scaling function and the exponent,z are deter-
mined by the symmetry of the ordered state and conservation
laws. The spatial structure of the order parameter is governed
by topological defects, such as vortices and hedgehogs, the
long-range interaction of which leads to algebraic growth.
The one-dimensional(1D) scalar order parameter, on the
other hand, exhibits logarithmic growth due to the exponen-
tial interaction of kinks.

For the case of nonconserved order parameter(NCOP)
dynamics, the kink equation has been derived from the time-
dependent Ginzburg-Landau(TDGL) equation[2], and the
domain distribution and logarithmic growth have been ob-
tained by kinetic study of the kink equation in the mid-1980s
[3]. Around the same time, the logarithmic growth was ob-
served experimentally in neutron scattering studies of a lay-
ered antiferromagnet[4]. The kink equation for the con-
served order parameter(COP) case was also derived from
the TDGL equation by Kawakatsu and Munakata(KM ), who
also identified logarithmic growth[5]. In their work, how-
ever, the spatial characteristics of the ordering process were
not investigated due to a lack of available computing power.
As no experimental system for 1D COP was known until the
recent work by Nagaya and Gilli(NG) [6], little attention has
been paid to such systems over long periods. Nagaya and
Gilli studied the coarsening process of the undulated domain
wall in a layered nematic system, and found that the appli-
cation of a magnetic field to a nematic layer yields a straight
domain wall in the layer. They also found that low-frequency
electric fields induce zigzag undulation of the wall, with the

undulation coarsening over time. This is equivalent to a 1D
kink-antikink system with conserved order parameter. It has
been shown that the average domain size grows logarithmi-
cally, and scaling laws for the distribution function of do-
main length, structure factor, and autocorrelation function
have been derived. The domain length only grew up to two
times the initial length in the NG experiments. Thus longer-
term observation is desirable in order to check the scaling
behavior.

This report presents numerical results for a wide time
range, in which the domain length grows to over one hun-
dred times the initial length. In the 1D case, thermal random
forces may be dominant over deterministic forces due to the
high thermodynamic energy of the system. At the thin limit
of the wall, the system is well simulated by the kinetic Ising
model, which exhibits power-law growths oft1/2 for NCOP
and t1/3 for COP [7]. In contrast, when the interaction be-
tween kinks is dominant, logarithmic growth occurs. The NG
experiments correspond to the latter case, which will also be
the focus of this paper. An interactive kink model based on a
modification of the Ising model has been proposed by Ma-
jumdar and Huse[8]. Noting that the interaction between
kinks is a short-range phenomena, they used an update
scheme by which the shortest domain is collapsed at each
time step without moving other kinks, and is assigned to
domains on both sides belonging to the same phase. Al-
though they have shown that the correlation functions can be
scaled by the average domain length, the time dependence
cannot be known in that system. Furthermore, the equiva-
lence to the equation of motion for kinks has yet to be ad-
equately verified.

In the present work, the cell dynamical system(CDS)
model was employed as a discrete-time version of the TDGL
equation and the KM equation for kinks. CDS is frequently
used for analysis of growth dynamics, and the results are
known to agree with the analytical results for high-
dimensional cases[1]. For the 1D case, however, CDS incurs
extremely long calculation times due to the short-range in-
teraction of kinks. Accordingly, CDS is used only to check
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the early stage of growth, and the KM equation is employed
to study long-time behavior.

The CDS model for the scalar order parametercsn,td is
given by

csn,t + 1d = Ffcsn,tdg − kkFfcsn,tdg − csn,tdll, s1d

Fscd = Dffscd + Dskkcll − cdg, s2d

wherekkAsndll−Asnd is the discrete Laplacian, which is sim-
ply given by fsAsn+1d+Asn−1d−2Asndg /2 for the 1D case.
The local mapfscd=s1−ucu2dc is used, corresponding to a
double-well potential. Figure 1 shows the growth of the av-
erage domain length forD=0.01,D=10.0, andN=216 sites.
The initial distribution ofcn is given by uniform random
numbers ofucnu,0.4. The domain length is well fitted by a
logarithmic line abovet=33105, wheret denotes the num-
ber of updates. This lower bound of the logarithmic growth
corresponds to the stage in which most kinks exhibit a sta-
tionary profile, as shown in the insets. The increment of the
domain length in this simulation is less than twice the lower
edge, and is considered to be too small to confirm the scaling
behavior of the structure factor or correlation function. It
takes several months of computation to obtain domain length
growth of several times.

The stationary profile of a kink derived from the TDGL
equation is given bycx0

sxd=tanhsx−x0d, wherex0 is the kink
core position. Inserting an N-kink state csxd=−1
+on=0

N−1s−1dnfcxn
sxd+1g into the TDGL equation, it is possible

to derive the equation forhxnj. As the driving force for kinks
is yielded by excess energy related to the superposition of
exponential tails of the kink, the dominant term should be
extracted as a function of the separation of adjacent kink
pairshxn+1−xnj. For the conserved case, Kawakatsu and Mu-
nakata showed that the relation can be written in a simpler
form in terms of,n=xn+1−xn instead ofxn, as follows:

,̇n = In
s+d + In

s−d, s3d

where

In
s+d = − In+2

s−d =
1

,n+1
se−,n+2 − e−,nd . s4d

One can interpret thatIn
s−d andIn

s+d represent theflow transfer-
ring from ,n−2 and ,n+2, respectively, due to the kink inter-
action. The conditionIn

s+d= In+2
s−d satisfies the conservation law.

As expected from the exponential interaction between
kinks, the numerical results show logarithmic growth. To cal-
culate the long-term behavior, simulations were performed
by using a logarithmic time oft=ln t, where the growth
equation(3) is written asd,n/dt=expstdfIn

s+d+ In
s−dg. For a

given number of kinksN, equal to the number of antikinks,
the total length of the system is given byon=0

2N−1,n, which is
conserved in each run. A periodic boundary condition was
used, with dt=0.005. The system was updated using a
fourth-order Runge-Kutta scheme. When a kink-antikink pair
approach to within a unit length(i.e., ,n,1), the pair is
considered to be annihilated. As it is not obvious what initial
distribution corresponds to that just after the early transient
stage that kinks are formed in a system quenched from a
disordered state, three initial distributions of kink positions
were tested and compared with the results of CDS. Case I
has initial kink positions given by uniform random numbers,
where the initial domain size distribution is an exponential
function. The other cases have domain lengths, rather than
kink positions, given by Gaussian(case II) and uniform(case
III ) random numbers. Figure 2 shows the growth of domain
size averaged over 50 runs for these three initial configura-
tions. The initial numbers of kinks and antikinks areN=5
3104. The growth of the average domain sizek,lstd fits the
logarithmic curve well abovek,lstd<10. The upper bound of
this calculation wask,lstd=750, corresponding toNstd=300,
which is sufficiently large to avoid finite-size effects. As
shown in the inset, the calculation using a logarithmic time
step was consistent with the linear-update model in the early
stage.

Figure 3 shows the domain size distribution function
scaled by the average domain sizek,lstd for the three initial
conditions. The size distribution function grows toward a
single scaling function ofgs, / k,ld in all cases. Cases I and

FIG. 1. Average domain length against time obtained by CDS
simulation. The dotted line is the best fit. Insets show the profiles of
the order parametercn. The time represents the number of updates.

FIG. 2. Average domain length against time for three types of
initial distribution. The inset shows a comparison between the re-
sults obtained using a constant logarithmic time step ofDt
=D log10t=0.005, and those obtained using a linear time step of
Dt=0.1.
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III collapse to a similar scaling function, whereas case II
reaches a steeper scaling function.

The distribution function for case I has a long transient
regime and seems to be progressing to a scaling regime
within the time range of the present calculations, as sug-
gested by the longer tail of the initial distribution compared
to the other two cases. Thus the ordering dynamics for the
present kink system depends remarkably on the initial con-
dition.

As shown by the lines in Fig. 3(I), the experimental and
CDS data are in reasonable agreement with the results of
cases I and III. The CDS results for the case of a thin domain
wall sD=2.0d is fitted best, while the other distributions are
slightly more symmetrical than the kink kinetics results.

These results indicate that the kink kinetic results follow an
asymptotic curve in large systems.

The spatial configuration of the Ising-like order parameter
csxd defined bycsxd=s−1dn was also examined foroi=0

n−1,i

,x,oi=0
n ,i. The structure factor in this case is given by

Ssk,td= uon=0
M−1csxnd expsi2pkxn/Mdu2, where hxnj represent

M points equally dividing the system length. Figure 4 shows
the structure factor scaled byk,lstd, obtained by averaging
200 runs withM =215 and 33104 initial kinks for case I. The
correlation function of the order parameterCsr ,td is shown
in Fig. 5, as obtained by Fourier transformation ofSsk,td.
The power-law tailk−2 and the linear decay in the short-
distance region ofCsr ,td are evidence of a kink structure.
The scaling holds reasonably well, but still continues to shift
slightly as the periodicity becomes stronger over time. Case I
(Fig. 4) is the most remarkable case, where the first mini-
mum located atr / k,l=0.70 grows from20.46 to20.52 ast
changes from 25 to 55. The first minimum in case III is
located atr / k,l=0.62 and changes slightly from20.578 to
20.591 during the same period, while case II changes by
less than 1%:20.323 att=15 and20.326 att=45. This
indicates, considering the behavior ofgs, / k,ld, that cases II
and III almost reach the scaling regime within this period.

The two-time autocorrelation function is known to be
characterized by an independent exponentl via

FIG. 3. Scaled distribution function of domain size.(I)–(III )
correspond to cases I–III in the text. CDS results for two values of
D are also plotted in(I). The solid line in(I) indicates experimental
results presented previously[6]. The data fort=180.0 in (I) is
shown in(III ) as a solid line for comparison.

FIG. 4. Scaled structure factor. The inset shows the same data
on a logarithmic scale.

FIG. 5. The scaled equal-time two-point correlation function.
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At0
std = kcsx,t0dcsx,t0 + tdl , k,lstd−l. s5d

The autocorrelation function was determined at 300 points
for a run starting with 33104 kinks and antikinks, and the
function was averaged over all points and 200 runs. Figure 6
showsAt0

std for case I, plotted against the average domain
size. The autocorrelation function exhibits power-law decay
except for a certain region at longer times, where a finite-size
effect would occur. The values ofl indicated in Fig. 6 were
calculated in the power-law regions ofk,lstd,70 for
log10t0=0.0, 2.0, and 4.0, andAt0

std.0.02 for othert0. The
behavior ofAt0

std can be divided into two regimes; an early
transient regime at smallt0, and the scaling regime at all
calculation times. In the former case,l increases witht0,
whereas in the latter case,l takes a universal value of 3.0.

The data oft0=2.0 and 4.0 are considered to crossover to the
regime with l=3.0 at aroundk,lstd=80. It was found that
At0

std decreases slowest in case IIsl=2.1d and fastest in case
III sl=3.2d. Thus the exponentl is also dependent on the
initial configuration.

This report presented numerical results for the ordering
dynamics of a conserved scalar order parameter system. It is
shown that the average domain size can be fitted to a single
logarithmic curve over a wide range of time including the
pre-scaling regime. The scaling regime for the distribution
functions of domain length and structure factor was identi-
fied. The CDS results were most accurately reproduced by
cases I and III of the kink kinetics system. Thus the ordering
after quenching from the thermal disordered state is consid-
ered to correspond to cases I and III. The scaling function of
case II differs from those of the other cases. As the scaled
function of case I moves slightly in the opposite direction to
that of case II, they do not seem to collapse to a single
function. Consequently, the present results are considered to
progress out of the pre-scaling regime, and to indicate the
existence of more than one stable scaling structure.

The power-law decay of the autocorrelation function was
also investigated, and it was found that the exponentl also
depends on the initial configuration. The exponentl is, how-
ever, robust with respect to the initial timet0, as long ast0 is
within the scaling region. This robustness was also recog-
nized by Yeunget al. [9] for 2D systems. The value ofl also
satisfies the lower bound suggested by Yeunget al.
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FIG. 6. Two-time autocorrelation function for some base times
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std.0.02,
respectively.
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