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Phase-ordering simulation of one-dimensional conserved kink system
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The kink-antikink kinetics of one-dimensional phase ordering under conserved order parameter dynamics is
studied numerically. The average domain size is found to grow logarithmically, and the distribution of domain
size and order parameter correlation function are shown to satisfy a scaling relation. The two-time autocorre-
lation function follows a power law ofy (t) ~t™, where\ depends on the start time of the calculattgnif
to is in the scaling regime takes a constant value of 3.0. Thus the scaling functions are sensitive to the initial
configuration of domains. When the initial kink positions are given by uniform random numbers, the scaling
functions agree with those obtained by cell dynamical system simulation.
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The growth of an ordered phase following gquenchingundulation coarsening over time. This is equivalent to a 1D
from a disordered phase satisfies a form of dynamical scalingink-antikink system with conserved order parameter. It has
in most case$l]. For the vector order parametgr,t), the  been shown that the average domain size grows logarithmi-
correlation functionC(r,t)=(4(ro,t)-¢(ro+r,t)) is known  cally, and scaling laws for the distribution function of do-
to be cast into a scaling fori@(r,t)=f(r/¢) and the charac- main length, structure factor, and autocorrelation function
teristic length grows algebraically in timé(t)~t'~ The  have been derived. The domain length only grew up to two
form of the scaling function and the exponentare deter- times the initial length in the NG experiments. Thus longer-
mined by the symmetry of the ordered state and conservatiogrm observation is desirable in order to check the scaling
laws. The spatial structure of the order parameter is governegkehavior.
by topological defects, such as vortices and hedgehogs, the This report presents numerical results for a wide time
long-range interaction of which leads to algebraic growth.range, in which the domain length grows to over one hun-
The one-dimensiona1D) scalar order parameter, on the dred times the initial length. In the 1D case, thermal random
other hand, exhibits logarithmic growth due to the exponenforces may be dominant over deterministic forces due to the
tial interaction of kinks. high thermodynamic energy of the system. At the thin limit

For the case of nonconserved order param@€OP)  of the wall, the system is well simulated by the kinetic Ising
dynamics, the kink equation has been derived from the timemodel, which exhibits power-law growths 62 for NCOP
dependent Ginzburg-Landa@DGL) equation[2], and the  and /3 for COP[7]. In contrast, when the interaction be-
domain distribution and logarithmic growth have been ob-tween kinks is dominant, logarithmic growth occurs. The NG
tained by kinetic study of the kink equation in the mid-1980sexperiments correspond to the latter case, which will also be
[3]. Around the same time, the logarithmic growth was ob-the focus of this paper. An interactive kink model based on a
served experimentally in neutron scattering studies of a laymodification of the Ising model has been proposed by Ma-
ered antiferromagnef4]. The kink equation for the con- jumdar and Husd8]. Noting that the interaction between
served order paramet¢€OP) case was also derived from kinks is a short-range phenomena, they used an update
the TDGL equation by Kawakatsu and Munaked), who  scheme by which the shortest domain is collapsed at each
also identified logarithmic growtf5]. In their work, how-  time step without moving other kinks, and is assigned to
ever, the spatial characteristics of the ordering process wegmains on both sides belonging to the same phase. Al-
not investigated due to a lack of available computing powerthough they have shown that the correlation functions can be
As no experimental system for 1D COP was known until thescaled by the average domain length, the time dependence
recent work by Nagaya and GillNG) [6], little attention has  cannot be known in that system. Furthermore, the equiva-
been paid to such systems over long periods. Nagaya angnce to the equation of motion for kinks has yet to be ad-
Gilli studied the coarsening process of the undulated domaigquately verified.
wall in a layered nematic system, and found that the appli- '|n the present work, the cell dynamical syst¢@DS)
cation of a magnetic field to a nematic layer yields a straighinodel was employed as a discrete-time version of the TDGL
domain wall in the layer. They also found that low-frequencyequation and the KM equation for kinks. CDS is frequently
electric fields induce Zigzag undulation of the Wa”, with the used for ana|y5i5 of growth dynamiCS, and the results are

known to agree with the analytical results for high-

dimensional cas€g4]. For the 1D case, however, CDS incurs
*Electronic adddress: toyoki@yamanashi.ac.jp extremely long calculation times due to the short-range in-
TElectronic addresss: nagaya@elec.okayama-u.ac.jp teraction of kinks. Accordingly, CDS is used only to check
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FIG. 1. Average domain length against time obtained by cpgnitial distribution. The inset shows a comparison between the re-

simulation. The dotted line is the best fit. Insets show the profiles ofUltS obtained using a constant logarithmic time step Aaf
the order parametef;,. The time represents the number of updates.ZA |89110t:0-005’ and those obtained using a linear time step of

the early stage of growth, and the KM equation is employed @ © 1., »

to study long-time behavior. I =—lh2= 7 (e (m2—gn). (4)
The CDS model for the scalar order paramefén,t) is n+l

given by One can interpret thaﬁ_) andlﬁf) represent théow transfer-

ring from €,_, and {,,,,, respectively, due to the kink inter-
gnt+1) = Flpn 0] - (] = ¢(n)), (1) action. The condition'”=1", satisfies the conservation law.
As expected from the exponential interaction between
F() = A[f() + D) - Y], 2) kinks, the numerical results show logarithmic growth. To cal-
culate the long-term behavior, simulations were performed
where((A(n)))—A(n) is the discrete Laplacian, which is sim- by using a logarithmic time ofr=Int, where the growth
ply given by[(A(n+1)+A(n-1)-2A(n)]/2 for the 1D case. equation(3) is written asd¢,/dr=exp(D[I'"”+I1""]. For a
The local mapf(y)=(1-|#? is used, corresponding to a given number of kinksN, equal to the number of antikinks,
double-well potential. Figure 1 shows the growth of the av-the total length of the system is given BN '¢,, which is
erage domain length fak=0.01,D=10.0, andN=26 sites. ~ conserved in each run. A periodic boundary condition was
The initial distribution of ¢, is given by uniform random used, with d7=0.005. The system was updated using a
numbers of|,| <0.4. The domain length is well fitted by a fourth-order Runge-Kutta scheme. When a kink-antikink pair
logarithmic line above=3x 10°, wheret denotes the num- approach to within a unit lengtii.e., £,<1), the pair is
ber of updates. This lower bound of the logarithmic growthconsidered to be annihilated. As it is not obvious what initial
corresponds to the stage in which most kinks exhibit a stadistribution corresponds to that just after the early transient
tionary profile, as shown in the insets. The increment of thestage that kinks are formed in a system quenched from a
domain length in this simulation is less than twice the lowerdisordered state, three initial distributions of kink positions
edge, and is considered to be too small to confirm the scalingere tested and compared with the results of CDS. Case |
behavior of the structure factor or correlation function. Ithas initial kink positions given by uniform random numbers,
takes several months of computation to obtain domain lengtihere the initial domain size distribution is an exponential

growth of several times. function. The other cases have domain lengths, rather than
The stationary profile of a kink derived from the TDGL kink positions, given by Gaussidoase I) and uniform(case
equation is given byl/xo(X):tanf(X—Xo), wherex, is the kink  1ll) random numbers. Figure 2 shows the growth of domain

core position. Inserting anN-kink state y(x)=—-1  Size averaged over 50 runs for these three initial configura-
+SN(=1) g, (X)+1] into the TDGL equation, it is possible tions. The initial numbers of kinks and antikinks axe=5

to derive the enquation fdix,}. As the driving force for kinks X 104.' Thg growth of the average domain sigg(t) fits the

is yielded by excess energy related to the superposition dPgarithmic curve well abovef)(t) ~ 10. The upper bound of
exponential tails of the kink, the dominant term should bethis calculation wag¢)(t)=750, corresponding thi(t) =300,
extracted as a function of the separation of adjacent kinkvhich is sufficiently large to avoid finite-size effects. As
pairs{x,.1—X,}. For the conserved case, Kawakatsu and Mu-shown in the inset, the calculation using a logarithmic time
nakata showed that the relation can be written in a simpleptep was consistent with the linear-update model in the early

form in terms of€,=x,.1—X, instead ofx,, as follows: stage.
Figure 3 shows the domain size distribution function
én: |£]+) + |§]—>, (3) scaled by the average domain size(t) for the three initial
conditions. The size distribution function grows toward a
where single scaling function of(€/(€)) in all cases. Cases | and
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FIG. 4. Scaled structure factor. The inset shows the same data

on a logarithmic scale.

These results indicate that the kink kinetic results follow an
asymptotic curve in large systems.

The spatial configuration of the Ising-like order parameter

Y(x) defined by(x)=(-1)" was also examined foEi”:‘OlEi
<x<Z[Lof;. The structure factor in this case is given by
Sk, 1) =[N %) expli2arkx,/M)
M points equally dividing the system length. Figure 4 shows
the structure factor scaled Ky)(t), obtained by averaging
200 runs withM =25 and 3x 10% initial kinks for case I|. The
correlation function of the order paramet(r,t) is shown
in Fig. 5, as obtained by Fourier transformation Sk, t).
The power-law tailk? and the linear decay in the short-
Y distance region of(r,t) are evidence of a kink structure.
1000 o The scaling holds reasonably well, but still continues to shift
] slightly as the periodicity becomes stronger over time. Case |
(Fig. 4 is the most remarkable case, where the first mini-
mum located at/{¢)=0.70 grows from-0.46 to—0.52 asr
changes from 25 to 55. The first minimum in case Il is
located atr/{£)=0.62 and changes slightly from0.578 to
L Mg ] —0.591 during the same period, while case Il changes by
ud> ’ less than 1%:—0.323 at7=15 and—0.326 at7=45. This

2, where {x,} represent

indicates, considering the behaviorgiit/(()), that cases Il

FIG. 3. Scaled distribution function of domain sizg)—(lll)
correspond to cases I-lll in the text. CDS results for two values of
D are also plotted irdl). The solid line in(l) indicates experimental
results presented previous[$]. The data forr=180.0 in(l) is
shown in(lll) as a solid line for comparison.

[ll collapse to a similar scaling function, whereas case Il
reaches a steeper scaling function.

The distribution function for case | has a long transient
regime and seems to be progressing to a scaling regime
within the time range of the present calculations, as sug-
gested by the longer tail of the initial distribution compared
to the other two cases. Thus the ordering dynamics for the
present kink system depends remarkably on the initial con-
dition.

As shown by the lines in Fig. @), the experimental and
CDS data are in reasonable agreement with the results of
cases | and Ill. The CDS results for the case of a thin domain
wall (D=2.0 is fitted best, while the other distributions are
slightly more symmetrical than the kink kinetics results.
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and Il almost reach the scaling regime within this period.

The two-time autocorrelation function is known to be

characterized by an independent exponenia

C@r.»

FIG. 5. The scaled equal-time two-point correlation function.
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FIG. 6. Two-time autocorrelation function for some base times
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The data ot;=2.0 and 4.0 are considered to crossover to the
regime withA=3.0 at around¢)(t)=80. It was found that
Ato(t) decreases slowest in caséNl=2.1) and fastest in case
I (\=3.2). Thus the exponent is also dependent on the
initial configuration.

This report presented numerical results for the ordering
dynamics of a conserved scalar order parameter system. It is
shown that the average domain size can be fitted to a single
logarithmic curve over a wide range of time including the
pre-scaling regime. The scaling regime for the distribution
functions of domain length and structure factor was identi-
fied. The CDS results were most accurately reproduced by
cases | and Il of the kink kinetics system. Thus the ordering
after quenching from the thermal disordered state is consid-

t,. The best-fit values of the exponentre indicated by dashed and €red to correspond to cases | and Ill. The scaling function of

solid lines, corresponding to(€)(t)<70.0 and Ato(t)>0.02,

respectively.

At (D) = (X t) (Xt + 1) ~ (€)™

case |l differs from those of the other cases. As the scaled
function of case | moves slightly in the opposite direction to
that of case Il, they do not seem to collapse to a single
function. Consequently, the present results are considered to

®) progress out of the pre-scaling regime, and to indicate the

The autocorrelation function was determined at 300 point§Xistence of more than one stable scaling structure.

for a run starting with %X 10* kinks and antikinks, and the

The power-law decay of the autocorrelation function was

function was averaged over all points and 200 runs. Figure /S0 investigated, and it was found that the exponeatso

showsAto(t) for case |, plotted against the average domair@
size. The autocorrelation function exhibits power-law decaf
except for a certain region at longer times, where a finite-siz&”
effect would occur. The values afindicated in Fig. 6 were
calculated in the power-law regions dft)(t)<70 for

epends on the initial configuration. The exponeid, how-

ver, robust with respect to the initial tinhg as long agg is
ithin the scaling region. This robustness was also recog-
nized by Yeunget al.[9] for 2D systems. The value afalso
satisfies the lower bound suggested by Yeaeh@l.

l0g10t=0.0, 2.0, and 4.0, ané, (t)>0.02 for othert,. The The authors are grateful to Professor H. Orihara for help-
behavior ofA, (t) can be divided into two regimes; an early ful discussions and comments in the early stage of this work.
transient regime at smatp, and the scaling regime at all T. Nagaya thanks the support of a Grant-in-Aid for Scientific
calculation times. In the former cask, increases witht, Research from the Japan Society for the Promotion of Sci-
whereas in the latter cask,takes a universal value of 3.0. ence(KAKENHI Grant No. 15540371
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